Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Journal of Korean Orthopaedic Research Society ; : 117-126, 2003.
Article in Korean | WPRIM | ID: wpr-147906

ABSTRACT

PURPOSE: The in vitro biocompatibility of Calcium Metaphosphate (CMP) with human bone marrow stromal cells (HBMSCs) and its effect on osteoblastic differentiation have been evaluated. MATERIALS AND METHODS: The effects of CMP on the HBMSCs undergoing osteoblastic differentiation were evaluated with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Morphologies of the HBMSCs were examined using scanning electron microscopy and confocal laser scanning microscopy. Osteoblastic differentiation of the HBMSCs was analyzed by alkaline phosphatase (ALP) staining and RTPCR. RESULTS: The CMP powder and disk did not exert cytotoxic effect on the HBMSCs. In addition, the HBMSCs were adhered on the surface of CMP disk as successfully as on the culture plate or HA disk and displayed similar actin arrangement and cellular phenotypes. Furthermore, the HBMSCs grown on three different matrices were able to support osteoblastic differentiation of the HBMSCs as accessed by ALP staining. However, the CMP disk compared to the HA disk has a better ability to induce expression of osteoblast-related genes such as ALP, osteopontin (OPN) and osteoprotegerin (OPG). CONCLUSION: The results demonstrate that, in addition to biocompatibility of the CMP with the HBMSCs, the CMP has an ability to stimulate osteoblastic differentiation of the HBMSCs in vitro.


Subject(s)
Humans , Actins , Alkaline Phosphatase , Calcium , Mesenchymal Stem Cells , Microscopy, Confocal , Microscopy, Electron, Scanning , Osteoblasts , Osteopontin , Osteoprotegerin , Phenotype , Stromal Cells
2.
The Journal of the Korean Academy of Periodontology ; : 1-20, 2001.
Article in Korean | WPRIM | ID: wpr-203865

ABSTRACT

Chitosan is a biodegradable natural polymer that has been demonstrated its ability to improve wound healing, and calcium metaphosphate(CMP) is a unique class of phosphate minerals having a polymeric structure. In this study, chitosan/CMP and platelet derived growth factor(PDGF-BB) loaded chitosan/CMP sponges were developed, and the effect of the sponges on bone regeneration and their possibility as scaffolds for bone formation by three-dimensional osteoblast culture were examined. PDGF-BB loaded chitosan/CMP sponges were prepared by freeze-drying of a mixture of chitosan solution and CMP powder, and soaking in a PDGF-BB solution. Fabricated sponge retained its 3-dimensional porous structure with 100-200micrometer pores. The release kinetics of PDGF-BB loaded onto the sponge were measured in vitro with 125I-labeled PDGF-BB. In order to examine their possibility as scaffolds for bone formation, fetal rat calvarial osteoblastic cells were isolated, cultured, and seeded into the sponges. The cell-sponge constructs were cultured for 28 days. Cell proliferation, alkaline phosphatase activity were measured at 1, 7, 14 and 28 days, and histologic examination was performed. In order to examine the effect on the healing of bone defect, the sponges were implanted into rat calvarial defects. Rats were sacrificed 2 and 4 weeks after implantation and histologic and histomorphometrical examination were performed. An effective therapeutic concentration of PDGF-BB following a high initial burst release was maintained throughout the examination period. PDGF-BB loaded chitosan/CMP sponges supported the proliferation of seeded osteoblastic cells as well as their differentiation as indicated by high alkaline phosphatase activities. Histologic findings indicated that seeded osteoblastic cells well attached to sponge matrices and proliferated in a multi-layer fashion. In the experiments of implantation in rat calvarial defects, histologic and histomorphometric examination revealed that chitosan/CMP sponge promoted osseous healing as compared to controls. PDGF-BB loaded chitosan/CMP sponge further enhanced bone regeneration. These results suggested that PDGF-BB loaded chitosan/CMP sponge was a feasable scaffolding material to grow osteoblast in a three-dimentional structure for transplantation into a site for bone regeneration.


Subject(s)
Animals , Rats , Alkaline Phosphatase , Blood Platelets , Bone Regeneration , Calcium , Cell Proliferation , Chitosan , Kinetics , Minerals , Osteoblasts , Osteogenesis , Platelet-Derived Growth Factor , Polymers , Porifera , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL